形式和功能
神經網絡是運行在計算機上的軟件,人工智能的“神經元”沒有物理實體。它們以位數和字符串的形式編碼在硬盤或硅芯片上,它們的物理結構和真正的神經元一點也不像。相反,在人腦中形式和功能是同時存在的。
大小
人類大腦大約有1000億個神經元,目前的神經網絡通常有幾百個左右。
連接
在神經網絡中,每一層通常與上一層和下一層完全連接。但人腦并沒有所謂的層,相反,它依賴于許多預定義的結構。并不是人類大腦的所有區域都是同樣連接的,區域是專門用于特定目的的。
能量消耗
人腦在能量消耗方面,比現存的任何人工智能都更為節能。人腦大約耗費20瓦能量,這與現在標準筆記本電腦耗費的差不多。但有了這些能量,大腦處理的神經元數量多一百萬倍。
體系
在神經網絡中,這些層是整齊有序的一個接一個地處理。而另一方面,人腦會進行很多并行處理,沒有任何特定的順序。
激活狀態
在人腦中,神經元要么是激活狀態,要么非激活狀態。在神經網絡中,激活是由連續值模擬的。因此人造神經元可以平穩地從上到下運行,這是人腦做不到的。
速度
人類的大腦比任何人工智能系統都要慢得多。一臺標準計算機每秒執行大約100億次操作。另一方面,人的神經元激活頻率為每秒最多一千次。
學習方式
神經網絡通過輸出來學習。如果根據損失函數,這個輸出是低性能的。然后,網絡通過改變神經元的權重和它們之間的連接做出反應。沒有人知道人類學習的細節,但肯定不是這樣的。
結構
神經網絡每次都是從零開始的。而人腦呢?很多結構已經連接到它的連接處,而且利用的模型,這在進化過程中被證明是有用的。
精度
人腦的干擾因素更多,而且不如計算機上運行的神經網絡精確。這意味著大腦基本上不能運行與神經網絡相同的學習機制,它可能使用完全不同的機制。
這些差異的結果是,如今的人工智能需要大量的訓練,需要大量精心準備的數據。這與人腦的運行方式是很不一樣的。
局限性
神經網絡不會建立世界中模型,相反它們會學習對模式進行分類。這種模式識別只需要很小的變化就會失敗。
一個著名的例子是,你給圖片添加少量影響因素,這些因素小到肉眼無法識別。但人工智能系統可能會被騙,錯認為物品A認為是物品B。
目前,神經網絡也不善于從它們所學習的情況推廣到另一種情況。
它們的成功很大程度上取決于定義正確的“損失函數”。如果你沒有謹慎思考損失函數,你最終會優化你不想要的東西。比如本被訓練以恒定的高速行駛的自動駕駛汽車,很可能變成只會原地旋轉。
但是神經網絡擅長于一些內容。比如對圖像進行分類,或者推斷出沒有明顯趨勢的數據。